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In order to study and validate the jump conditions established in part 1, we realize a priori tests thanks to
the data of a 3D Direct Numerical Simulation (DNS) of a strongly deformable bubble in a spatially decay-
ing turbulence. The complex interactions between interface and turbulence are fully resolved. An explicit
filtering of the DNS has been employed to evaluate the filtered quantities and to check the potential of the
models for two-phase flows in the Interface and Subgrid Scales (ISS) modeling case proposed in part 1.
The ISS concept is our proposal of a two-phase equivalent for the one-phase Large Eddy Simulation
(LES) modeling case with sharp-interfaces. In this concept, bubbles remain bigger than the mesh size.
Due to the impossibility to define a filter equivalent to the matched asymptotic expansions, we only test
the modeling of the equivalent interface transport (the momentum jump conditions are not tested in this
article, but will deserve additional results in a posteriori tests). Because the closure of the transport equa-
tion of the under-resolved discontinuous interface requires more modeling assumptions than the closure
of the momentum equation, we think that the most relevant test has been done. The a priori tests realized
show excellent agreement between the ISS models and the real contributions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of bubbly turbulent flows is a problem of consid-
erable importance in a variety of applications such as convective
boiling, spray formation and direct contact heat exchanger.
Because these flows are characterized by the presence of a great
number of scales, it is impossible to use Direct Numerical Simula-
tion (DNS) for industrial applications. A promising tool would be an
equivalent of Large Eddy Simulation (LES) for two-phase flows.

In part 1 (Toutant et al., accepted for publication), we propose
the Interface and Subgrid Scales (ISS) concept. Like the single-
phase LES concept, it consists in solving the two-phase flow
features at the grid scale of the numerical method and to take into
account the unresolved scales with subgrid models. However, we
restrict the model in that the filter is much smaller than the bub-
bles. In this paper, we realize a DNS to make a priori tests of the
ISS concept. Indeed, the DNS data allow to estimate both the real
ll rights reserved.
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subgrid terms and the ISS model subgrid terms. Thus, we can com-
pare the real and the ISS terms and evaluate the model.

Because it is impossible to define a filter equivalent to the
matched asymptotic expansions, we only test the modeling of the
equivalent interface transport.1 Indeed, it is easier to test the inter-
face transport than the momentum equation. This is due to the fact
that the interface transport only requires the velocity at the interface
and the momentum equation the velocity gradient at the interface.
Fortunately, the test of the interface transport is more relevant than
the test of the momentum equation because more closure assump-
tions have been done for the interface transport than for the momen-
tum equation. The differences between the closures of these two
equations are explained in the next paragraph.

To find the ISS closures, we have used three levels of descrip-
tion: DNS, continuous LES and discontinuous LES. Two up-scaling
steps correspond to these three levels. This paper is dedicated to
the validation of the second up-scaling step (from continuous to
discontinuous LES). The first up-scaling step (from DNS to contin-
uous LES) makes appear one subgrid term in the transport of the
1 The momentum jump conditions are not tested in this article, but will deserve
additional results in a posteriori tests.
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under-resolved continuous interface and two subgrid terms in the
momentum equation. The modeling of these three subgrid terms
using a scale similarity hypothesis is validated in Toutant et al.
(2008). In this previous work, DNS data are used to realize a priori
tests. The proposed closures at the continuous LES level are com-
pared to the real contribution of the corresponding subgrid term.
The results show that the closures are very well correlated to the
real contributions. The second up-scaling step transforms

� the term related to the advection of the momentum equation to
the equivalent term for one-phase flow (it is ~qfL in Eq. (75c) of
part 1),

� the term related to the acceleration of the momentum equation to
the integral of this term (it is the term III in Eq. (75c) of part 1),

� the term related to the transport of the under-resolved continu-
ous interface to the integral of this term (it is the term I in Eq.
(75b) of part 1).

The validity of these transformations depends only on the validity
of the assumptions made for applying the method of the matched
asymptotic expansions. The choice of the location of the discontinu-
ous interface implies that no more terms appear in the momentum
equation. However, another term appears in the equation of the
transport of the under-resolved discontinuous interface whatever
its location (it is the term II in Eq. (75b) of part 1). Initially, this
new term is not closed. Its modeling requires two new assumptions:
an approximation of the interface and a particular choice of the ker-
nel filter G. The interface is approximated by a surface whose curva-
ture is linearly varying between the principal curvatures (Eq. (61)
part 1 Toutant et al., accepted for publication) and the filter is chosen
spherical (Eq. (62) part 1 Toutant et al., accepted for publication). In
addition to these two new assumptions, the modeling of the inter-
face transport uses the time evolution of the principal curvature that
is also a result of part 1 (see Appendix D of part 1 Toutant et al.,
accepted for publication). These are the reasons why the tests dedi-
cated to the equation of the transport of the under-resolved discon-
tinuous interface (Eq. (75b) of part 1) are the most relevant tests. We
choose to perform a priori tests. At each time step, each closure is
compared to the real contribution of the corresponding subgrid
term. A priori tests will allow to know if the proposed closure is struc-
turally very close to the real subgrid term.

In Section 2, we present a relevant DNS of the interaction be-
tween a buoyant bubble and a spatially decaying turbulence. In
Section 3, we perform with the DNS data a priori tests to evaluate
the validity of the closures to model the velocity of the under-re-
solved discontinuous interface (see part 1 Toutant et al., accepted
for publication). Conclusions and perspectives are finally drawn.

2. A relevant simulation at the DNS level

In the context of DNS of two-phase flows, most of the literature
is dedicated to two types of studies.

� On the one hand, computations focus on deformable interfaces
but not really on developed turbulence. For instance, Bunner
and Tryggvason (2003) study the effect of bubble deformation
on the properties of bubbly flows (Bunner and Tryggvason,
2003). In their simulations, vortical structures are only produced
by the wake of bubbles. The so-called pseudo-turbulence induced
by a bubble swarm does not have the same properties as a really
developed turbulence whose energy spectrum has an inertial
zone.

� On the other hand, the turbulence is fully developed but the
interfaces are non-deformable. Thus, complex interactions
between fluid velocity fluctuations and interface deformations
cannot exist. In a large amount of works in this category, the size
of the particles is smaller than the Kolmogorov length scale
(Février et al., 2005) and, even when the particle’s diameter is
much larger than this scale, bubbles are supposed to be non-
deformable. For example, Merle et al. (2005) simulate the
dynamics of a clean spherical bubble fixed in a turbulent pipe
flow (Merle et al., 2005).

In addition to these two types of studies, a recent work of Lu
et al. (2005) is dedicated to the study of deformable bubbles in tur-
bulent channel flows. This study based on several DNS is very com-
plete, several physical phenomena occur: turbulence production at
the wall, effect of the bubble wakes, interaction between the bub-
bles, coupling between bubbles and turbulence. Concerning bubble
deformations, the physical conditions are very similar to ours
(three Weber numbers are examined 0.203, 0.270 and 0.405).
The Reynolds number of Lu et al. using the friction velocity and
the half-height of the channel is equal to 135. The simulations per-
formed by Lu et al. could be used in order to test the ISS closure. In
the present contribution, we choose a different geometry. We
investigate the DNS of the motion of a strongly deformable bubble
in a spatially decaying turbulence. It allows us to use a uniform
mesh (helpful to perform a priori tests) and to reach a turbulent
Reynolds number equal to 480. This turbulent Reynolds number
is relatively small but it is slightly bigger than the Reynolds num-
ber of Lu et al. Thus, the ratio of the bubble curvature radius over
the Kolmogorov length scale is also slightly bigger in our case. In
this study, we focus our attention on the coupling between inter-
faces and turbulence (turbulence production, effect of bubble
wakes and interaction between bubbles are not taken into ac-
count). It is coherent with our approach. Indeed, the ISS concept
is a local and instantaneous model. We do not consider the bubble
as an entity that interacts with turbulence. We consider the very
local problem of the interaction between a portion of the bubble
(that can be assimilated to a free-surface) and the coherent turbu-
lent structures near the interface. Consequently, a test case to eval-
uate ISS model is relevant if the Kolmogorov length scale is much
smaller than the bubble diameter and the turbulent structures cre-
ate large deformation of the interface. The realized test case satis-
fies these conditions.

2.1. Solved equations

To perform the DNS (see Fig. 1 of part 1), we use a ‘‘sharp-inter-
face” version of the Front-Tracking approach that does not resort to
usual explicit smoothing functions of the interfaces. Since the
interfaces are not smeared, the method can capture more accu-
rately the turbulent transfer between the two phases. It was as-
sessed on many application tests comparing the obtained results
with analytical solutions or experimental data (Mathieu, 2004).
This original method benefits from the VOF method to impose
the mass conservation for the computation of the indicator func-
tion and from the level-set method to use a signed distance func-
tion. Nevertheless, the interfaces are explicitly described using a
Lagrangian mesh, moving on an Eulerian mesh for the flux compu-
tation as for the classical Front-Tracking method. The system (1) is
approximated by explicit finite volumes of second order in space
(the convection operator is centered) and third order in time (we
use a Runge–Kutta scheme).

r�u¼0 ð1aÞ
@qu
@t
þr�ðqu�uÞ¼�rpþqgþrjndrþr�ðlðruþrT uÞÞ ð1bÞ
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Fig. 1. Interaction of a buoyant deformable bubble with a spatially decaying turbulence.
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with

rvk ¼ �nkdr ð2Þ

where t is the time, u the velocity, p the pressure, q the density, l
the dynamic viscosity, n ¼ ng the normal to the interface (from gas
to liquid), j the interface curvature and dr the Dirac function indi-
cating the interface. The system (1) is valid on the entire domain in
the sense of distributions (see, e.g., Kataoka, 1986). The numerical
method is described in previous works (Calvin et al., 2002; Mathieu,
2003, 2004; Labourasse et al., 2007).

2.2. Boundary conditions and validation tests

To perform the DNS of a deformable bubble in a decaying turbu-
lence, two computations are realized. The first one, simulation s1, is
a single-phase flow, that corresponds to the classical homogeneous
isotropic turbulence in a three-dimensional periodic box. The sec-
ond one, simulation s2, is a two-phase simulation. First, each sim-
ulation reaches separately a statistically steady state. Then, a
uniform translation motion is added in order to perform the simu-
Fig. 2. Visualization of bubble and Q-isosurfaces.
lation in the bubble’s frame of reference. Finally, we use one
boundary of s1 as an inlet condition of imposed velocity for the
simulation s2 (see Figs. 1 and 2). Doing this coupling, the simula-
tion mimics the physical situation of a buoyant bubble rising
against a downwards flow passing through a fixed grid. The grid
creates a decaying turbulence that interacts with the downstream
bubble. The mesh size of the simulations s1 and s2 is 128 � 128 �
128 allocated to 8 processors. We have paid a particular attention
to the task of providing realistic inlet conditions that reproduces
the velocity field of a grid turbulence. Indeed, in s1, kinetic energy
is rescaled at every time step. Our method to force turbulence cor-
responds to a linear forcing method proposed by Lundgren (2003).
Our results are in agreement which those of Rosales and Meneveau
(2005). In particular, we find the Kolmogorov k�

5
3 slope and the

most energetic structures (that correspond also to the beginning
of the inertial zone) have the size of the domain of simulation
(Fig. 3). Furthermore, we evaluate the Kolmogorov length scale
thanks to the dissipation rate that we would have without a forcing
method. We found g ¼ 2:1� 10�4 m whereas the mesh size is
9:8� 10�5 m. Thus, s1 is fully resolved (i.e. the mesh size is fine
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Table 1
Dimensionless numbers. In this table, we use the following definitions, Reb ¼ VT Db

ml
;

We ¼ ql ec Db
r ; Mo ¼ gl4

l
qlr3 and Bo ¼ ql gD2

b
r where VT is the terminal velocity of the bubble

in the laminar case, Db the bubble diameter, ml the kinematic viscosity of the liquid
and ec the kinetic energy density of the simulation s1.

Reb We Mo Bo g
Db

L
Db

T
Tb

25.8 0.2 2:2� 10�5 2.1 0.06 1.4 0.5

40x40x40 mesh
64x64x64 mesh
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128x128x128 mesh
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Fig. 4. Mesh convergence for the laminar case of a single rising bubble ðs2Þ: time
evolution of the vertical coordinate of the bubble’s center of gravity.
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enough to capture the smallest coherent turbulent structures). In
s2, we simulate the interaction of the buoyant bubble with the spa-
tially decaying turbulence. The size of our bubble is in the inertial
zone of the kinetic energy spectrum (see Fig. 3). The most relevant
dimensionless numbers of the simulation are given in Table 1 (g is
the Kolmogorov length scale, Db the bubble diameter, Tb the relax-
ation time of the bubble, T and L the time and space integral scales,
respectively). Finally, we realize a mesh convergence for the lami-
nar case of a simple rising bubble. We demonstrate that a
96 � 96 � 96 mesh is enough to capture the terminal velocity of
the bubble (i.e. the mesh size is fine enough to capture the bubble
dynamic, see Fig. 4). Because the smallest turbulence scales are
generated by s1 and because the smallest scales related to the
two-phase flow correspond to the laminar boundary layer at the
bubble surface, the fact that the mesh size is fine enough to capture
the flow for s1 and s2 without coupling implies that the mesh size
is fine enough to capture the flow resulting from the coupling of s1
and s2. More details about this DNS could be found in Toutant et al.
(2008).
3. Velocity of the under-resolved discontinuous interface

In this section, we evaluate the potential of the ISS model to
estimate the velocity of the under-resolved discontinuous inter-
face. We note this velocity v ~r:

@~vg

@t
¼ v ~rd~r ð3Þ

The ISS model of this velocity is noted vm
~r . In order to evaluate the

ISS model, it is necessary to calculate with the DNS data vm
~r and v ~r.

These calculations are explained in Sections 3.1 and 3.2, respec-
tively. In Section 3.3, the model is interpreted as a deconvolution
of the surface filtering operation. The explicit calculation of the sur-
face filtering operation is explained in Section 3.4. Finally in Section
3.5, the results in terms of difference between the model velocity
vm

~r and the real velocity v ~r are analysed.
3.1. Evaluation of the modeling expression with DNS data

In part 1, we have determined the transport equation of the
phase indicator function in the ISS modeling case:

vm
~r ¼ ~u � ~nþ ~u � ~nr � ~ur � ~nr

� �
þ r2

10
Ds vm

~r
� �

� ~nþ 2rs vm
~r

� �
: rsðenÞ� �

ð4Þ

This equation gives the ISS model of the velocity of the under-re-
solved discontinuous interface vm

~r as a function of the known veloc-
ity ~u and of the known normal ~n.

In order to evaluate the velocity given by the ISS model vmer , the
velocity and the normal of the ISS description level, ~u and ~n, are re-
quired. The DNS only gives the velocity u and the normal n. The
velocity and the normal of the ISS description level, ~u and ~n, have
to be calculated. Because the operator e� is the asymptotic limit of
the operator �, we do not have an explicit equation that defines e�
and this operator has to be estimated. Actually, we only need to
estimate the effect of this operator on the velocity and on the nor-
mal at the interface.

Regarding the velocity, by definition of the ISS description level
(see part 1 Toutant et al., accepted for publication), we have in the
entire domain:

~u ¼ u0 ð5Þ

We want to show that, at order zero and at the interface, one gets:

~ujn0
3¼0 ¼ �ur ð6Þ

By definition of the surface filtering operation (see part 1 Eq. (48)),
we have:

�urðn0
1; n

0
2Þ ¼

Z
R2

Grðn0
1 � n1; n

0
2 � n2Þuðn1; n2; n3 ¼ 0Þdn1 dn2 ð7Þ

By definition of the volume filtering operation (see part 1 Eq. (4a)
and part 1 Section 4.2.5 for the decomposition of the three-dimen-
sional kernel G), we have:

�uðn0
1; n

0
2; n

0
3 ¼ 0Þ ¼

Z
R3

Grðn0
1 � n1; n

0
2 � n2ÞG3ðn0

3 � n3Þ

� uðn1; n2; n3Þdn1 dn2 dn3 ð8Þ

Since the velocity u is continuous at the interface ðn0
3 ¼ 0Þ at the

DNS scale, we can perform the following Taylor expansion around
n0

3 ¼ 0:

uðn1; n2; n3Þ ¼ uðn1; n2; n
0
3 ¼ 0Þ þ Oðn3 � n0

3Þ
¼ uðn1; n2; n

0
3 ¼ 0Þ þ Oð�Þ ð9Þ

Injecting this expression in Eq. (8), one gets:

�uðn0
1; n

0
2; n

0
3 ¼ 0Þ ¼

Z
R3

Grðn0
1 � n1; n

0
2 � n2ÞG3ðn0

3 � n3Þ

� uðn1; n2; n
0
3 ¼ 0Þdn1 dn2 dn3 þ Oð�Þ ð10Þ

By definition, we have �u ¼ �u0 þ Oð�Þ (see part 1 Eq. (23)). Thus, by
identification and using the property of the normal part G3 of the
three-dimensional kernel, one gets:

�u0ðn0
1; n

0
2; n

0
3 ¼ 0Þ ¼

Z
R2

Grðn0
1 � n1; n

0
2 � n2Þ

� uðn1; n2; n
0
3 ¼ 0Þdn1 dn2 ¼ �urðn0

1; n
0
2Þ ð11Þ

Regarding the normal, one can prove that the local mass conserva-
tion imposed in part 1. (See Eq. (55) of part 1.) implies that the nor-
mal of the equivalent interface, ~n, is equal at order zero to the
filtered normal of the exact interface, �nr. The demonstration is
given in Appendix A.
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Therefore, the velocity of the ISS model is well approximated by:

vm
~r ¼ �ur � �nr þ �ur � �nrr � �urr � �nrr� �
þ r2

10
Ds vm

~r
� �

� �nr þ 2rs vm
~r

� �
: rs �nrð Þ

� �
ð12Þ
3.2. Reference velocity

The reference velocity v ~r is the exact velocity of the under-re-
solved discontinuous interface that we have to compare to the
velocity given by the ISS model vm

~r . The most precise way to calcu-
late the reference velocity is the following algorithm:

� store the DNS interface geometry at each time step vt ,
� apply a volume filter to this interface to obtain the continuous

transition zone �vt ,
� reconstruct a discontinuous interface that corresponds to the ISS

interface �vt and
� evaluate the motion of the ISS interface during each time step.

This algorithm is very complex to implement and requires too
much data storage. To simplify this algorithm, we assume that
the geometry of the under-resolved discontinuous interface is well
described using the surface filtering operation, �nr. This assumption
is equivalent to use ~n ¼ �nr. In Appendix A, we prove that this
equality is true at order zero. Consequently, we pass from the
DNS interface to the ISS interface applying the surface filtering
operation. Furthermore, by definition the DNS interface location
at time t is moved to its location at time t þ dt by the DNS velocity
field, u. Thus, the velocity of the ISS interface v ~r is well approxi-
mated by (Fig. 5):

v ~r ¼ u � �nr ð13Þ
2 The curvature is supposed to evolve slowly in the filter control volume.
3 Actually, the ISS model is essentially developed without choosing a particular

filter. However, the term related to the time evolution of the curvature requires to
choose a particular filter (see Eq. (60) part 1).
3.3. Interpretation of the model

The proposed model is good if the modeled velocity is a good
approximation of the real velocity vm

~r � v ~r or, it is equivalent, if
the difference between the velocity of the microscopic level
u � �nr and the velocity of the macroscopic level �ur � �nr is well
approximated by the scale similarity hypothesis and the time evo-
lution of the curvature. One notes sdisc the difference between the
velocity and sm

disc the corresponding model:

sdisc¼u��nr��ur ��nr¼ðu��urÞ� �nr ð14aÞ

sm
disc¼ �ur ��nrr��urr � �nrr� �

þ r2

10
Ds vm

~r
� �

��nrþ2rs vm
~r

� �
:rsð�nrÞ

� �
ð14bÞ

The model is good if sm
disc � sdisc. The previous definition of sdisc

shows that the model has to reconstruct the normal velocity
u � nr thanks to the velocity filtered by the surface filtering opera-
tion �ur � �nr. So, the model sm
disc is good if it enables the deconvolu-

tion of the surface filtering operation ��r. It is worth noting that
there is a surface Laplacian in the expression of sm

disc. In the single-
phase LES modeling case, the velocity fluctuations are estimated
by the Laplacian of the mean velocity when one uses deconvolution
methods (Sagaut, 2003). Thanks to the matched expansion meth-
ods, we see that the Laplacian is also a part of the model for the
deconvolution of a surface filter. Physically, the term that is due
to the curvature time evolution and that involves the Laplacian
r2

10 ðDsðvm
~r Þ � �nr þ 2rsðvm

~r Þ : rsð�nrÞÞ corresponds to the effects of the
subgrid velocity fluctuations on the bubble geometry.

3.4. Discrete filtering surface operations

In this section, we describe how the surface filtering operation
is explicitly calculated. At the DNS scale, the interface is explicitly
described by a Lagrangian mesh moving on an Eulerian mesh. This
Lagrangian mesh is constituted by markers. In each marker i of
the Lagrangian mesh and for a given variable / defined on the
interface the resulting filtered field �/r

i is computed recursively
as follows

/̂i ¼
1

Ni þ 1
/i þ

X
j2Ei

/j

 !
ð15aÞ

^̂/i ¼
1

Ni þ 1
/̂i þ

X
j2Ei

/̂j

 !
ð15bÞ

�/r
i ¼

^̂
/̂i ¼

1
Ni þ 1

^̂/i þ
X
j2Ei

^̂/j

 !
ð15cÞ

where Ei is the set of the closest neighbors of i and Ni is the number
of the closest neighbors of i. Fig. 6 shows the principle of this recur-
sive filter. We choose to apply the filter three times because it cor-
responds to the largest filter size that is allowed by the assumption
of the ISS model.2

This explicit recursive filter does not correspond to the theoret-
ical filter we use to develop the ISS model.3 Indeed, we use a spher-
ical filter to find the closure relation for the time evolution of the
filtered phase indicator (Section 4.3.2.2 of part 1). To take into ac-
count this difference (that will ever exist in a practical way because
the implicit filtering operation is unknown), we introduce the coef-
ficients c0 and c1 in the ISS model:

vm
~r ¼ �ur � �nr þ c0 �ur � �nrr � �urr � �nrr� �

þ c1
r2

10
Ds vm

~r
� �

� �nr þ 2rs vm
~r

� �
: rsð�nrÞ

� �
ð16Þ

These coefficients c0 and c1 are the parameters of our model to take
into account the difference between the theoretical filtering opera-
tion and the numerical one. We determine these parameters by
minimizing the difference between the modeled velocity vm

~r and
the real velocity v ~r of the under-resolved discontinuous interface.

In the previous equation, the modeled velocity is defined in
function of itself: it is an implicit definition. This implicit definition
of the velocity of the under-resolved discontinuous interface im-
plies that it is varying non-linearly as a function of the coefficients
c0 and c1. In order to determine these parameters we use the sim-
plex algorithm (Nelder and Mead, 1965). Thanks to this algorithm,
we minimize the integral error over a relevant time. At each time
step, the error is
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Fig. 6. Definition of the filtered fields.
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E ¼
PN

k¼1 sdiscðxkÞ � sm
discðxkÞ

� �2PN
k¼1 sdiscðxkÞð Þ2

ð17Þ

where N is the number of Lagrangian points describing the interface
and xk the coordinates of the point k. We integrate the error E over
the time for each tested couple ðc0; c1Þ. The minimum is found for
ðc0 ¼ 1:5; c1 ¼ 0:36Þ. The mean error is then 8%. All the results de-
scribed in the next section are obtained with these parameters.

3.5. Results

Fig. 7 shows the time evolution of the error E (Eq. (17)) when
the term sdisc is modeled:

� only by the surface similarity scale hypothesis c0ð�ur � �nrr � �urr�
�nrrÞ ðc0 ¼ 1:5Þ,

� only by taking into account the time evolution of the curvature
c1

r2

10 ðDsðvm
~r Þ � �nr þ 2rsðvm

~r Þ : rsð�nrÞÞ ðc1 ¼ 0:36Þ and
� by the whole model sm

disc that uses the last two terms.
The comparison is performed over more than 500 time steps.
The averaged error in time (more than 500 time steps) and space
(bubble surface) is smaller than 10%. Because ISS modeling is local
and because a lot of turbulent structures of very different scales
interact with small parts of the interface, one time step is already
a very complete test case and the average over more than 500 time
steps could be considered as a statistical error. This is confirmed by
the fact that increasing the tested interval does not change the
averaged error. Fig. 7 shows that 50% of the subgrid term is mod-
eled by only one of the two contributions of the proposed model.
Using both the term related to the scale similarity hypothesis
and the term related to the time evolution of the curvature (the
whole model), more than 90% is correctly modeled. If the parame-
ters ðc0; c1Þ are optimized separately, similar results are obtained.
Consequently, the two terms are required to correct the displace-
ment of the equivalent discontinuity. Furthermore, we note that
their behaviors are quite different and they seem to be comple-
mentary. Indeed, a local maximum of the error using the scale sim-
ilarity corresponds to a local minimum of the error using the time
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Fig. 7. Time evolution of the interface transport error. In the case of a model: with
only the similarity scale, with only the time evolution of the curvature, combining
the two terms.
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evolution of the curvature (and vice-versa). In this way, although
the error of one contribution of the model is strongly varying,
the error of the whole model is almost constant. At t ¼ 200Dt for
example, the term related to the time evolution of the curvature
Fig. 8. Comparison between the proposed m
is much more useful than the term related to the scale similarity.
At t ¼ 500Dt, it is the contrary. It is not surprising that the term re-
lated to the time evolution of the curvature models up to more than
60% of the subgrid term because it depends on the Laplacian of the
velocity that is a good approximation of velocity fluctuations.

In order to better understand the role of each contribution, Figs.
8–10 show them on the interface at time t ¼ 0; t ¼ 200Dt and
t ¼ 500Dt (respectively). These three times correspond to the three
kind of complementarities of the terms. For t ¼ 500Dt (Fig. 10), the
patterns are the same but the intensity of the terms are different.
For t ¼ 0 (Fig. 8), the patterns are almost the same but the locations
where their sign shifts are clearly distinct. For t ¼ 200Dt (Fig. 9),
the two terms do not have the same patterns. In any case, only
the sum of the two terms (Figs. 8–10(b)) allows to correctly
estimate both the pattern and the intensity of the subgrid term
(Figs. 8–10(b)). Consequently, the error (Figs. 8–10(e)) represents
less than 10% of the subgrid term. This statement is corroborated
by the correlations of each term and the whole model with the real
contribution (Figs. 11–13). The whole model is very well correlated
to the real contribution (Figs. 11–13(a)). At the beginning of the
simulation (Fig. 11), the model is a little less efficient. It is due to
the large curvatures of the interface that are a limit of validity of
our model. The correlations of the isolated terms are not as good
(Figs. 11–13(b) and Figs. 11–13(c)): the dispersion of isolated
odels and the real contribution, t ¼ 0.



Fig. 9. Comparison between the proposed models and the real contribution, t
Dt ¼ 200.
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terms is much more important. We note again their complemen-
tarities: although the scale similarity underestimates the subgrid
term, the time evolution of the curvature overestimates it. Thus,
both the interest of the proposed model and the complementarities
of the two terms are confirmed.

4. Conclusions and perspectives

We use a simulation that is representative of the interactions
between interfaces and turbulence. This simulation is relevant to
evaluate the ISS model because the Kolmogorov length scale is
much smaller than the bubble diameter and the interface is
strongly deformed by the turbulent structures. Due to the impossi-
bility to define a priori the ISS variables, we only test the interface
transport equation of the ISS model (the momentum jump condi-
tions are not tested). However, we think that it is more important
to test the interface transport equation than the momentum jump
conditions. Indeed, the closure of the under-resolved discontinu-
ous interface transport equation requires more modeling assump-
tions than the closure of the momentum equation. The a priori tests



Fig. 10. Comparison between the proposed models and the real contribution, t
Dt ¼ 500.
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Fig. 13. Correlation between the model and the real contribution of the subgrid term of the interface transport equation, t
Dt ¼ 500.
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realized with the DNS data prove that a surface scale similarity
hypothesis and the time evolution of the curvature precisely cor-
rect the velocity of the equivalent interface. These two terms ap-
pear to be complementary:

� the term related to the surface scale similarity hypothesis takes
into account the correlations between the normal at the inter-
face and the velocity of the phases,

� the term related to the time evolution of the curvature takes into
account the effect of the subgrid velocity fluctuations on the
interface geometry.

We have now implemented the ISS models. We are currently
realizing a posteriori tests in order to evaluate the gain (in terms
of numerical costs) that ISS allows compared to DNS.
Appendix A. Normal of the equivalent interface and filtered
normal of the exact interface

In this section, we prove that the local mass conservation (Eq.
(55) of part 1) imposed in Section 4.3.1 of part 1 implies that the
normal of the equivalent interface, ~n, is equal at order zero to
the filtered normal of the exact interface, �nr. Taking the gradient
of the local mass conservation (Eq. (55)) one finds at order zero:
0 ¼
Z

V
r~vg �rvg

� �
dV ðA:1aÞ

¼
Z

V
�~nd~r �rvg

� �
dV ðA:1bÞ

¼
Z

V
�~nd~r � nvg;3

� �
dV ðA:1cÞ

¼
Z

V

�nrG3ðn3Þ � ~nd~rð ÞdV ðA:1dÞ

At order zero, an integral over V could be reduced to an integral over
the direction normal to the interface (see Eq. (B.6) of part 1). Thus,
the previous equation gives:Z

�nrG3ðn3Þ � ~nd~rð Þdn3 ¼ 0 ðA:2Þ

Finally, we obtain:

~n ¼ �nr ðA:3Þ
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